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ABSTRACT 
This paper used the Metropolis Hastings Markov Chain Monte Carlo algorithms to forecast and monitor the dynamics 

of HIV/AIDS prevalence rates in Ghana.  The study sampled four sites in Upper East Region and explored them with 

these algorithms.  Even though there were many Monte Carlo algorithms, the study discovered that the independence 

Metropolis-Hastings’ were the most suitable and appropriate for this mathematical forecasting and monitoring.  We 

therefore, recommended for the continuous and extensive use of these algorithms in immunological surveys to help 

modify the continuous use of prevalence rates. 
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     INTRODUCTION 
Smith (2007), Mira & Sargent (2006), and Roberts & Rosenthal (2004) explain the Markov Chain Monte Carlo 

(MCMC) algorithms as chains having complicated stationary distributions, for which it is important to understand 

some simulation techniques and the speed of convergence. The idea iteratively and recursively simulate probability 

distributions that are representative of the magnitude and nature of the prevalence rates of HIV virus forecast.  

 

Chib & Carlin (2007), Lewis et al, (2007) and Krishnan (2004) confirm that MCMC algorithms have been applied 

successfully to analyze HIV/AIDS data and are widely applicable. This is because they are computationally more 

efficient and faster to implement than many multinomial methods in analyzing more complex evolutionary models 

and larger datasets. In particular, Smith (2007), Mira & Sargent (2006), and Roberts & Rosenthal (2004) discovered 

that the Metropolis-Hastings algorithms have become extremely popular in high dimensional data. However, as 

supported by Guimarães et al (2009), these methods are quite unpopular in the analysis of HIV/AIDS data in the 

developing world. We therefore wish to explore the MCMC algorithms as mathematical tools of forecasting and 

educating people on the dynamics of HIV/AIDS prevalence rates in Ghana.  

 

Markov Chain Monte Carlo Algorithms  

Chen (2009), Carter (2008), Walsh (2004), and Hanson (2000) explain the MCMC algorithms as a class of general 

computational algorithms for sampling from posterior distributions and computing posterior quantities of the random 

variables nX .  What a good MCME models seeks to do is implore a preceding state (Xn-1) to arrive at the final steady 

state(s) to produce the same expected values.  

 

Gibbs Algorithms  

The Gibbs algorithms are special cases of Metropolis-Hastings’ algorithms. Even though the Gibbs’ are usually faster 

and easier to use, they are less applicable to approximate joint distributions. It is however, agreed that the 

characteristics and composition of HIV/AIDS prevalence rates are multifaceted and require multiple distributions to 

compute and understand the dynamics (Walsh, 2004; Ewens & Grant, 2001; Hanson 2000). 
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Metropolis Algorithms 

The Metropolis algorithms are the methods of computing complex integrals by expressing them as expectations for 

some distributions nX , and estimating them as separate expectations. Thus, the Metropolis algorithms generate 

sequences of chains  nXXX ,...,, 10 , as the transition probabilities that do not depend  110 ,...,, nXXX  and 

obtain the stationary distributions of nX  (Walsh, 2004; Hanson, 2000). 

 

Metropolis-Hasting (MH) Algorithms  

The Metropolis–Hastings algorithm is an MCMC method for obtaining a sequence of random samples nX  from a 

probability distribution for which direct sampling is difficult. Unlike the Gibbs’ and Metropolis, the data are 

probabilistic, results depend on previous, and stability is arrived at the optimum number of iterations. Quite apart, the 

simulation procedures follow the constructs of Markov chains with the random, and compute its states to the target 

steady state distribution. (Ali & Oduro, 2012; Malve, 2007; Walsh, 2004). 

 

There are two main MH algorithms, vis-a-vis random-walk metropolis and random-walk metropolis.  

In random, the simulation introduces an error term ( k ) in the models and analyzes this error simultaneously with the 

main parameters. It is however, tedious and time-consuming because one has to always physically control k , or at 

least adjust k  to an acceptable levels before making any valid conclusions. Thus, the theory of random walk supposes 

that data must be statistically independent. But this is not case in many forms of HIV/AIDS prevalence rates that are 

often correlated (Ali& Oduro, 2014; Browne, 2003; Johannes & Polson, 2003).  

 

On the other hand, the Independence Metropolis-Hastings algorithms simulate data, which depends on the previous 

states. Even though the future states are drawn independently of the previous states, the current states would not be 

independent, since the acceptance probabilities also depend on previous states. All that one needs is to approximate 

the initial states in a way that they closely match to certain properties of the steady distribution. This ensures that the 

algorithms correctly forecast and target the designated final states (Ali& Oduro, 2014; Browne, 2003; Johannes & 

Polson, 2003).  

 

Computing Independence Metropolis-Hastings Algorithms 

[1] We usually start with the initial probabilities as 
)0(

nX , and then iterate it.  

[2] We then arrive at the final probabilities as 
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[3] We then calculate ratio of the initial to the final as ‘a’.  

[4] We analyze as if 1a , then we have attained the steady, otherwise, we continue the iteration or abort our 

initial statistical assumptions. 

 

Because the mathematical computation is somehow tedious here, we could redirect the algorithms to Markov chains, 

and outline the initial and final distributions in matrix forms  The Markov chains make it easier to test the convergence 

with autocorrelation lags, Z-tests or cross correlations (Ali& Oduro, 2014; Chen, 2009; Lam, 2009; Browne, Tsurumi, 

2005; 2003; Johannes & Polson, 2003). 

 

Statement of the Problem 

In many instances, classical hypothesis testing in HIV/AIDS analysis postulates a null hypothesis, and fails to accept 

the hypothesis, if otherwise. However, the dynamics of the HIV/AIDS in the sentinel sites cannot normally be 

determined. In many parts of the world, stakeholders and researchers mostly use prevalence rates to report and forecast 

the HIV/AIDS virus in the sentinel sites. The prevalence rates methods desire lot of modifications and transformations. 

This is because the methods do not take into considerations the interdependence amongst infected and uninfected 
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people, migration dynamics of the people, and interdependence of people in many human activities, and other activities 

that provide potential grounds for people to interact.  In effect, one finds it very difficult to use these prevalence rates 

to predict, forecast and monitor the incidence either within a particular geographical area or between two or more 

places. Therefore, these algorithms provide this opportunity to simulate to assess the threat of infected people on those 

uninfected to help in forecasting and monitoring the dynamics of human endeavours. In particular, the independence 

MH algorithms provide interdependence between the past, present and future rates to forecast long-term phenomena. 

This study therefore, sought to explore these contemporary mathematical tools of forecasting and monitoring disease 

phenomena. 

 

METHODOLOGY 
Written informed consent and assent letters were obtained from my head of department and distributed to stakeholders 

of the Ghana Health Services. There were assurances of confidentiality and anonymity of the data. The study sampled 

the HIV/AIDS data from four sites in the Upper East Region of Ghana, through the Regional HIV/AIDS Coordinator 

and under the authority of the Regional Health Directorate. The data collection and collation process spanned between 

September to December 2015. In the data, we designated
)0(

nX  as the initial, 
)(k

nX  transition and hence the product 

of 
)()0( k

nn XX  designated the various intermediary states. We then used the SPSS to produce the cross correlation 

graphs, and the Matlab software to simulate the state distributions.  

 

RESULTS AND ANALYSIS 
This section contains the autocorrelation graphs of Bawku with Bolgatanga, Builsa and Navrongo, and the algorithms 

of the state distributions. 
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Figure 1: CCF Graph of Bawku with Bolgatanga 

 

Figure 1 above shows the CCF graph between Bawku and Bolgatanga. The lags were both negative and positive as k 

increases. However, there were more positive lags than the negative ones. This suggests that there were more 

movement and interaction between infected and uninfected persons in Bawku and Bolgatanga zones. 
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Figure 2:  CCF Graphs of Bawku with Navrongo 

 

Figure 2 above shows the CCF graph between Bawku and Navrongo. The lags were both negative and positive as k 

increases. Here, there were equal positive and negative lags. However, the positives exceeded the threshold of five. 

Therefore, the degree of interaction was even much more observed in these two sites as compared to Bawku with 

Bolgatanga, and must be checked and controlled. 
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Figure 3: CCF Graphs of Bawku with Builsa 

 

Figure 3 above shows the CCF graph between Bawku and Builsa. As usual, there were both negative and positive lags 

as k increases. However, there were morel positive than negative lags, and just a few exceeded 5. These also showed 

intensive interaction between these two sentinel zones. 
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MCMC algorithms  
The CCF graphs have established interactions that sought to explain that infected and uninfected people readily have 

contacts with one another. So suppose Bawku— aB , Bolgatanga— oB , Navrongo— aN  and Builsa-- uB , and from 

the initial proportions of infected people from the four zones, we would obtain the initial MCMC transmission matrix 

as follows: 

 

 
 

Data from the various zones show the proportions of people already infected with the virus. 
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This means the highest cases were recorded in Bawku and Bolgatanga. We would obtain the intermediate state by 

multiplying equations (1) and (2), and so on, until we arrive at the final state as in equation (4) below. A back up check 

to stability is to compute the powers of equation (1) until each row of the final matrix is similar to equation (4). 

 

 

 
 

The equations (1) and (2) represented the initial matrices.  The MH simulations obtained the steady states at the 

equations (4) and (5). We have noticed nonzero entries in (4) and (5). This means that in the end, the HIV/AIDS virus 

transmissions will stabilize to the rates in (4) in the four sites in the Upper East Region. Stakeholders should use these 

rates as mathematical tools of forecasting and monitoring the dynamics of HIV/AIDS.  

 

DISCUSSIONS OF RESULTS 
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We observed that 








1.02.03.04.0

uaoa BNBB
 were the proportions of persons infected with the HIV virus in the 

original data. After the independence MH simulations, the rates reached an optimum steady matrix at 










18.021.031.027.0

uaoa BNBB
. This represented the long-term rates of persons from Bawku, Bolgatanga, Navrongo 

and Builsa sites respectively. This means the frequency of its occurrence will level off with time in the region. 

However, one can infer and envisage that the urban sites of Bawku and Bolgatanga would remain higher cases of the 

HIV/AIDS than the rural sites of Navrongo and Builsa in the Region. Therefore, prevention, education and supply of 

logistics should be swifter in areas with higher interactions and dependencies than those with observed lower 

interactions. That notwithstanding, care must be taken to suppress its spread in within a particular zones, as internal 

interactions could equally cause more infections.  

 

CONCLUSIONS AND RECOMMENDATIONS 
In these methods, we have discovered the theoretical underpinnings of the independence MH algorithms as a 

mathematical tool of forecasting and monitoring the dynamics of HIV/AIDS prevalence rates. We discovered that 

while the other MCMC algorithms may have a number of practical problems, independence MH had successfully 

iterated the HIV/AIDS data. The algorithms and its simulations produced the initial states as well as steady state 

distributions of the sites. We have also used the CCF convergence graphs to assess the suitability of the MCMC 

algorithms. Therefore, the independence MH algorithms can mathematically revolutionize the MCMC algorithms as 

mathematical tools of forecasting and monitoring the dynamics of HIV/AIDS prevalence rates.  

We therefore, recommend for the continuous and extensive use of these MH algorithms in immunological surveys to 

help modify and replace the continuous and over-dependent reliance on prevalence rates for surveillance, forecasting 

and monitoring the dynamics of HIV/AIDS prevalence rates, and other disease data.  

 

However, the study focused on only secondary reported data because the researchers were unable to perform the tests 

themselves. The immunological surveys would have really determined the antibody levels of the infected persons 

within the various sites, how fast persons can spread to enable stakeholders make much more intensive diagnosis of 

the tools, give insights into the efficacy of the current antiretroviral vaccines in use and the possibility of implementing 

immunization programmes against HIV/AIDS.  
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